پاورپوینت روش تحقیق منطق فازی (pptx) 21 اسلاید
دسته بندی : پاورپوینت
نوع فایل : PowerPoint (.pptx) ( قابل ویرایش و آماده پرینت )
تعداد اسلاید: 21 اسلاید
قسمتی از متن PowerPoint (.pptx) :
منطق فازی چیست؟
حتماً بارها شنیدهاید که کامپیوتر از یک منطق صفر و یک تبعیت میکند. در چارچوب این منطق، چیزها یا درستند یا نادرست، وجود دارند یا ندارند. اما انیشتین میگوید: <آنجایی که قوانین ریاضیات (کلاسیک) به واقعیات مربوط میشوند، مطمئن نیستند و آنجا که آنها مطمئن هستند، نمیتوانند به واقعیت اشاره داشته باشند.> هنگامی که درباره درستی یا نادرستی پدیدهها و اشیایی صحبت میکنیم که در دنیای واقعی با آنها سروکار داریم، توصیف انیشتین تجسمی است از ناکارآمدی قوانین منطق کلاسیک در علم ریاضیات. از این رو میبینیم اندیشه نسبیت شکل میگیرد و توسعه مییابد. در این مقاله میخواهیم به اختصار با منطق فازی آشنا شویم. منطقی که دنیا را نه به صورت حقایق صفر و یکی، بلکه به صورت طیفی خاکستری از واقعیتها میبیند و در هوش مصنوعی کاربرد فراوانی یافتهاست.
مقدمه
:
حتماً بارها شنیدهاید که کامپیوتر از یک منطق صفر و یک تبعیت میکند. در چارچوب این منطق، چیزها یا درستند یا نادرست، وجود دارند یا ندارند. اما انیشتین میگوید: <آنجایی که قوانین ریاضیات (کلاسیک) به واقعیات مربوط میشوند، مطمئن نیستند و آنجا که آنها مطمئن هستند، نمیتوانند به واقعیت اشاره داشته باشند.> هنگامی که درباره درستی یا نادرستی پدیدهها و اشیایی صحبت میکنیم که در دنیای واقعی با آنها سروکار داریم، توصیف انیشتین تجسمی است از ناکارآمدی قوانین منطق کلاسیک در علم ریاضیات. از این رو میبینیم اندیشه نسبیت شکل میگیرد و توسعه مییابد. در این مقاله میخواهیم به اختصار با منطق فازی آشنا شویم. منطقی که دنیا را نه به صورت حقایق صفر و یکی، بلکه به صورت طیفی خاکستری از واقعیتها میبیند و در هوش مصنوعی کاربرد فراوانی یافتهاست.
کجا اتومبیل خود را پارک میکنید؟
تصور کنید یک روز مطلع میشوید، نمایشگاه پوشاکی در گوشهای از شهر برپا شده است و تصمیم میگیرید، یک روز عصر به اتفاق خانواده سری به این نمایشگاه بزنید. چون محل نمایشگاه کمی دور است، از اتومبیل استفاده میکنید، اما وقتی به محل نمایشگاه میرسید، متوجه میشوید که عده زیادی به آنجا آمدهاند و پارکینگ نمایشگاه تا چشم کار میکند، پر شده است. اما چون حوصله صرف وقت برای پیدا کردن محل دیگری جهت پارک اتومبیل ندارید، با خود میگویید: <هر طور شده باید جای پارکی در این پارکینگ پیدا کنم.> سرانجام در گوشهای از این پارکینگ محلی را پیدا میکنید که یک ماشین به طور کامل در آن جا نمیشود، اما با کمی اغماض میشود یک ماشین را در آن جای داد، هرچند که این ریسک وجود دارد که فضای عبور و مرور دیگر خودروها را تنگ کنید و آنها هنگام حرکت به خودرو شما آسیب برسانند. اما به هرحال تصمیم میگیرید و ماشین خود را پارک میکنید. بسیارخوب! اکنون بیایید بررسی کنیم شما دقیقاً چه کار کردید؟ شما دنبال جای توقف یک اتومبیل میگشتید. آیا پیدا کردید؟ هم بله، هم نه. شما در ابتدا میخواستید ماشین را در جای مناسبی پارک کنید. آیا چنین عملی انجام دادید؟ از یک نظر بله، از یک دیدگاه نه. در مقایسه با وقت و انرژی لازم برای پیدا کردن یک مکان راحت برای توقف خودرو، شما جای مناسبی پیدا کردید. چون ممکن بود تا شب دنبال جا بگردید و چنین جایی را پیدا نکنید. اما از این نظر که اتومبیل را در جایی پارک کردید که فضای کافی برای قرارگرفتن ماشین شما نداشت، نمیتوان گفت جای مناسبی است.
گر به منطق کلاسیک در علم ریاضیات مراجعه کنیم و این پرسش را مطرح نماییم که قبل از ورود به پارکینگ چند درصد احتمال میدادید جایی برای پارککردن پیدا کنید، پاسخ بستگی به این دارد که واقعاً چه تعداد مکان مناسب (فضای کافی) برای توقف خودروها در آنجا وجود داشت؟ اگر به حافظه خود رجوع کنید، شاید به یاد بیاورید که هنگام ورود به پارکینگ و چرخیدن در قسمتهای مختلف آن، گاهی خودروهایی را میدیدید که طوری پارک کردهاند که مکان یک و نیم خودرو را اشغال کردهاند. بعضی دیگر نیز کج و معوج پارک کرده بودند و این فکر از ذهن شما چندبار گذشت که اگر صاحب بعضی از این خودروها درست پارک کرده بودند، الان جای خالی برای پارک کردن چندین ماشین دیگر هم وجود داشت.
به این ترتیب علم ریاضیات و آمار و احتمال در مواجهه با چنین شرایطی قادر به پاسخگویی نیست. اگر قرار بود بر اساس منطق صفر و یک یا باینری کامپیوتر، روباتی ساخته شود تا اتومیبل شما را در یک مکان مناسب پارک کند، احتمالش کم بود. چنین روباتی به احتمال زیاد ناکام از پارکینگ خارج میشد. پس شما با چه منطقی توانستید اتومبیل خود را پارک کنید؟ شما از منطق فازی استفاده کردید.
دنیای فازی
:
میپرسم <هوا ابری است یا آفتابی؟> پاسخ میدهی: نیمهابری. میپرسم <آیا همه آنچه که دیروز به من گفتی، راست بود؟> پاسخ میدهی: بیشتر آن حقیقت داشت. ما در زندگی روزمره بارها از منطق فازی استفاده میکنیم. واقعیت این است که دنیای صفر و یک، دنیایی انتزاعی و خیالی است. به ندرت پیش میآید موضوعی صددرصد درست یا صددرصد نادرست باشد؛ زیرا در دنیای واقعی در بسیاری از مواقع، همهچیز منظم و مرتب سرجایش
نیست.
از نخستین روز تولد اندیشه فازی، بیش از چهل سال میگذرد. در این مدت نظریه فازی، چارچوب فکری و علمی جدیدی را در محافل آکادمیک و مهندسی معرفی نموده و دیدگاه دانشمندان را نسبت به کمّ و کیف دنیای اطراف ما تغییر داده است. منطق فازی جهانبینی بدیع و واقعگرایانهای است که به اصلاح شالوده منطق علمی و ذهنی بشر کمک شایانی کردهاست.
پیشینه
منطق فازی
:
تئوری مجموعههای فازی و منطق فازی را اولین بار پرفسور لطفیزاده (2) در رسالهای به نام <مجموعههای فازی - اطلاعات و کنترل> در سال 1965 معرفی نمود. هدف اولیه او در آن زمان، توسعه مدلی کارآمدتر برای توصیف فرآیند پردازش زبانهای طبیعی بود. او مفاهیم و اصلاحاتی همچون مجموعههای فازی، رویدادهای فازی، اعداد فازی و فازیسازی را وارد علوم ریاضیات و مهندسی نمود. از آن زمان تاکنون، پرفسور لطفی زاده به دلیل معرفی نظریه بدیع و سودمند منطق فازی و تلاشهایش در این زمینه، موفق به کسب جوایز بینالمللی متعددی شده است.
پس از معرفی منطق فازی به دنیای علم، در ابتدا مقاومتهای بسیاری دربرابر پذیرش این نظریه صورت گرفت.
بخشی از این مقاومتها، چنان که ذکر شد، ناشی از برداشتهای نادرست از منطق فازی و کارایی آن بود. جالب اینکه، منطق فازی در سالهای نخست تولدش بیشتر در دنیای مشرق زمین، بهویژه کشور ژاپن با استقبال روبهرو شد، اما استیلای اندیشه کلاسیک صفر و یک در کشورهای مغرب زمین، اجازه رشد اندکی به این نظریه داد. با این حال به تدریج که این علم کاربردهایی پیدا کرد و وسایل الکترونیکی و دیجیتالی جدیدی وارد بازار شدند که بر اساس منطق فازی کارمیکردند، مخالفتها نیز اندک اندک کاهش یافتند.
در ژاپن استقبال از منطق فازی، عمدتاً به کاربرد آن در روباتیک و هوش مصنوعی مربوط میشود. موضوعی که یکی از نیروهای اصلی پیشبرندهِ این علم طی چهل سال گذشته بوده است. در حقیقت میتوان گفت بخش بزرگی از تاریخچه دانش هوش مصنوعی، با تاریخچه منطق فازی همراه و همداستان است.
مجموعههای فازی
:
بنیاد منطق فازی بر شالوده نظریه مجموعههای فازی استوار است. این نظریه تعمیمی از نظریه کلاسیک مجموعهها در علم ریاضیات است. در تئوری کلاسیک مجموعهها، یک عنصر، یا عضو مجموعه است یا نیست. در حقیقت عضویت عناصر از یک الگوی صفر و یک و باینری تبعیت میکند. اما تئوری مجموعههای فازی این مفهوم را بسط میدهد و عضویت درجهبندی شده را مطرح میکند. به این ترتیب که یک عنصر میتواند تا درجاتی - و نه کاملاً - عضو یک مجموعه باشد. مثلاً این جمله که <آقای الف به اندازه هفتاددرصد عضو جامعه بزرگسالان است> از دید تئوری مجموعههای فازی صحیح است. در این تئوری، عضویت اعضای مجموعه از طریق تابع (
u(x
مشخص میشود که
x
نمایانگر یک عضو مشخص و
u
تابعی فازی است که درجه عضویت
x
در مجموعه مربوطه را تعیین میکند و مقدار آن بین صفر و یک است (فرمول 1).
به بیان دیگر، (
u(x
نگاشتی از مقادیر
x
به مقادیر عددی ممکن بین صفر و یک را میسازد. تابع (
u(x
ممکن است مجموعهای از مقادیر گسسته (
discrete)
یا پیوسته باشد. وقتی که
u
فقط تعدادی از مقادیر گسسته بین صفر و یک را تشکیل میدهد، مثلاً ممکن است شامل اعداد 3/0 و 5/0 و 7/0 و 9/0 و صفر و یک باشد. اما وقتی مجموعه مقادیر
u
پیوسته باشند، یک منحنی پیوسته از اعداد اعشاری بین صفر و یک تشکیل میشود.
شکل 1 نموداری از نگاشت پیوسته مقادیر
x
به مقادیر (
u(x
را نشان میدهد. تابع (
u(x
در این نمودار میتواند قانون عضویت در یک مجموعه فازی فرضی را تعریف کند.
منطق فازی چگونه بهکار گرفته میشود؟
منطق فازی را از طریق قوانینی که <عملگرهای فازی> نامیده میشوند، میتوان بهکار گرفت. این قوانین معمولاً بر اساس مدل زیر تعریف میشوند:
IF variable IS set THEN action
به عنوان مثال فرض کنید میخواهیم یک توصیف فازی از دمای یک اتاق ارائه دهیم. در این صورت میتوانیم چند مجموعه فازی تعریف کنیم که از الگوی تابع (
u(x
تبعیت کند. شکل 2 نموداری از نگاشت متغیر <دمای هوا> به چند مجموعه فازی با نامهای <سرد>، <خنک>، <عادی>، <گرم> و <داغ> است. چنان که ملاحظه میکنید، یک درجه حرارت معین ممکن است متعلق به یک یا دو مجموعه باشد.
به عنوان نمونه، درجه حرارتهای بین دمای
T1
و
T2
هم متعلق به مجموعه <سرد> و هم متعلق به مجموعه <خنک> است. اما درجه عضویت یک دمای معین در این فاصله، در هر یک از دو مجموعه متفاوت است. به طوری که دمای نزدیک
T2
تنها به اندازه چند صدم در مجموعه <سرد> عضویت دارد، اما نزدیک نوددرصد در مجموعه <خنک> عضویت دارد.